

fermi national accelerator laboratory

May 6, 1977

To:

Art Greene

From:

Russ Huson, Spokesman for E546

Subject:

PARTICIPATION ON E546

The physicists who have committed their support to this experiment are:

Fermilab:

B. Chrisman

R. Harris (leaves June 1977)

R. Huson

J. Lys (leaves Sept. 1977)

T. Murphy

J. Schmidt

W. Smart

J. Wolfson

Lawrence Berkeley Lab and Univ. of Calif. at Berkeley:

G. Lynch

J. Marriner

J. Orthel

M. L. Stevenson

H. C. Ballagh

H. H. Bingham

W. F. Fretter

M. Sokolof

G. Yost

University of Hawaii:

R. J. Cence

R. A. Harris

M. Jones

S. I. Parker

M. W. Peters

V. Z. Peterson

V. J. Stenger

(, pgs

A. Greene

May 6, 1977

University of Washington:

- T. H. Burnett
- S. E. Csorna
- H. J. Lubatti
- K. Moriyasu
- H. Rudnicka
- B. Yuldashev

University of Wisconsin:

- U. Camerini
- J. Fry
- R. Loveless
- J. Mapp
- D. Reeder
- J. Von Krogh

P-459 1/2

I. Introduction

Discussions between the proponents of P-459 and P-460 have led to the formation of a collaboration to study neutrino physics in the 15' chamber filled with a neon-hydrogen mix with the two plane EMI utilizing a quad-triplet beam. The groups would be Berkeley, Fermilab, Hawaii, and Wisconsin.

II. Physics

The following is a brief listing of the obvious major problems that can be studied.

- 1.) Di-muon physics; strange particle production, hadron energy distribution, $\langle p_{\mu}/p_{\mu 2}\rangle$, equal sign μ 's etc.
- 2.) Tri-lepton physics µµµ µee µµe
- 3.) μ -e events. Although these are similar to $\mu\mu$ events, there is one major difference; namely in μe events one can separate which lepton is associated with the incoming ν and hence clearly separate ν from $\bar{\nu}$ interactions. All the problems can be studied with μe or with $\mu\mu$.
- 4.) μ + (Energetic K_s^0 or π^{\pm}) This class of events is of great interest in investigating the production of heavy leptons at the leptonic vertex.
- 5.) High Y anomolies which arise from special classes of events such as in 4.) and μe etc.
- 6.) Neutral currents production at high energies. Although this includes a mixture of ν and $\bar{\nu}_{\mu}$ strange particle production, W distributions, etc. it would be of considerable interest.

III. Flux

A total of 5×10^{18} protons (in several packages) would yield a significantly large number of di-lepton events so that a detailed study of associated phenomena could be made. Also this experiment would yield enough tri-leptons to permit a study of associated strange particles.

In the following table is given the number of observed events for a proton flux of 5×10^{18} and a neon-hydrogen mix of 60%.

Table I

μ (Charg. Curr.)	80,000	
μμ (ν _μ)	200	20 with p ₁ = p ₂
µµ (Ծ _µ)	20	
μ ⁻ e ⁺ (ν _μ)	500	
μ ⁺ e ⁻ (ν̄ _μ)	50	
µ µµ '	6	
μее	10	
v_e	2,000	
$\overline{v}_{\mathbf{e}}$	400	
N.C.	20,000	

IV. Ne-H Mix

The film from P-460 is being studied quantitatively. The problems associated with high energy and low energy electrons will be studied. A decision as to the mix will be made in a few weeks.

W. F. Fry March 10, 1977

Russ Huron is to be the principal Investigation

F. R. Huson March 7, 1977

11 events

E460 DATA SHEET

Data with 3-view B.C. and EMI Total protons on target Dimuon acceptance of 2-plane EMI (Monte Carlo) Target 62% Neon - 38% H. (track length \geq 60 cm) Expected neutrino charged currents Expected antinuetrino charged currents Expected $\mu^-\mu^+$ from ν (.01 x.35 x 4000) Expected $\mu^+\mu^-$ from $\bar{\nu}$ (.01 x.35 x 400)	17,000 pictures 2.5 x 10 ¹⁷ .35 15 tons 4000 events 400 events ~ 14 events ~ 1 event
Candidates. $P\mu \ge 4 \text{ GeV/c}$ $\mu^-\mu^+$ $\mu^-\mu^ \mu^+\mu^+$ (EMI hit prob. for 1 trotal	10 events 0 event is .008) 1 event 11 events
Background ($\mu^-\mu^+$ events with other hits in EMI, real?) ($\mu^+\mu^+$ punch-through, decay, real?) Good events (best estimate now available) 4-fold coincidence $\begin{cases} \mu^-\mu^+ & \text{from } \nu \\ \mu^+\mu^- & \text{from } \overline{\nu} \end{cases}$ Total	3 events 1 event 6 events 1 event

Note: The 7 good events are clean and the expected punch-through and decay background is ≤ 10% or 1 event. One event has a KQ, no others have observable V's.

If the second plane is "turned" off, we pick up the following additional multimuon events, which we believe are all background, i.e., punch-through.

Total

One-Page Summary

E460 - HIGH-ENERGY NEUTRINOS AND ANTINEUTRINOS IN A BUBBLE CHAMBER PLUS 2-PLANE EMI

The unique feature of this experiment is the positive muon identification made possible by the 2-plane EMI. With the addition of 14 more chambers making a total of 39 chambers (plane $1-3 \times 6=18$, plane $2-3 \times 7=21$), the acceptance for dimuon events produced by neutrinos from the quadrupole-triplet beam is about .35 for the 25-chamber configuration used in December and is expected to be about .50 for the new 39-chamber array.

The experimenters request 5 x 10^{18} protons so that a clean sample of about 200 dimuon events can be obtained. Obviously, a sample of greater than 200 μe events will also be obtained. Analysis of the dimuons is easier, however, both $\mu\mu$ and μe can be analyzed. An experiment of this nature is essential to understanding dilepton production by neutrinos. Since this experiment gives a clean sample of dileptons, physics effects larger than ~10% of the sample can be observed; for example, charm, new quarks, etc.

Since there would be ≥ 5000 antineutrino events with positive muon identification in both EMI planes, the experimenters believe they can study the high y anomaly. The EMI planes are arranged to give greater acceptance for positive muons. If the high y anomaly is due to charm production, it may be possible to observe the hadronic decay modes in mass distributions.

Whereas an experiment in this apparatus with 2×10^{18} protons will produce valuable data, 5×10^{18} protons will give a more definitive experiment. For this reason, we propose collaborating with Wisconsin, since we believe one experiment of 5×10^{18} protons is much better than 2 experiments each of 2×10^{18} protons.